Pages Menu
TwitterRss
Categories Menu

Posted by on Oct 16, 2013 in Featured Maps, London, Spatial Analysis, Visualisation | 0 comments

Open Data as Art: Data Windows

Open Data as Art: Data Windows

Ollie O’Brien and I have just dropped off our invited artwork to the  10X10 “Drawing the City London” project run by the building design charity Article 25. We are amongst a number of (much higher profile) contributors who have donated works to be auctioned on behalf of the charity in November to raise funds for the charity’s projects. The works will also be exhibited beforehand (keep an eye here for details). In spite of an increasing range of more abstract art and print projects on the go,  Ollie and I chose to play to our strengths by producing several maps from the 2011 Census. These covered East London since it was the project’s area of focus this year. The resulting artwork is completely based on open data (and was almost entirely produced with opensource software (QGIS)), licensed under the Open Government Licence.   A single physical copy was printed directly onto white canvas (thanks to Miles Irving at the Drawing Office in UCL Geography). Let’s hope it catches the bidders’ attention!...

Read More

Posted by on Jun 3, 2013 in Featured Maps, Slideshow, Spatial Analysis, Visualisation | 8 comments

Mapped: London’s Fire Engine Callouts

Mapped: London’s Fire Engine Callouts

This map shows the geography of fire engine callouts across London between January and September 2011. Each of the 144,000 or so lines represents a fire engine (pump) attending an incident (rounded to the nearest 100m) and they have been coloured according to the broad type of incident attended. These incident types have been further broken down in the bar chart on the bottom right. False alarms (in blue), for example, can be malicious (fortunately these are fairly rare), genuine or triggered by an automatic fire alarm (AFA). As the map shows, false alarms – thanks I guess to AFAs in office buildings – seem most common in central London. Actual fires occupy fewer fire engines than false alarms and other services (such as road traffic collisions (RTCs) and flooding), but as one might expect they appear to be a greater part of the incidents attended in more residential areas. As this map demonstrates, the London Fire Brigade deals with a huge number of incidents, and it is great that they...

Read More

Posted by on Aug 17, 2012 in Spatial Analysis, Visualisation | 2 comments

PNG  IHDRSs IDATxye}9w3%n"E 8H $8p8m! E$ldǴ()R9Ù޻ַ{9'{R![~BwWWսu;[1뺬o~&sBJ1)ek+sTFxcpj.ll"!ĨO/#mZk axDsq@k- ˱q<ߠ+@w6g/n<=a|oSCGn9#=[ )%kk\v:&d{If3n{JlnP vRz "ZkZ[>t؂uNf|${3L1$4lh[FFF]]E+[gU!VX8n՗ȕٟ"_9Bi uI}oBsBHˏ=C4_o >l/!DoQl>rEJSZ'ZA n׻aFGKl\/~7?zG>gHw7c:lQXCq]NёX,r Yxl "\9>wFؒZE-ynuh́\ #i\S䑏~FGkZ;;̟Yrg :j ŸAC/F(r>SaAP k7ZifvHnX{<0GuF% w2&ڶVM(/ݏ]bt޹ (.>̉x3' ZH+=vEbTrk{Zn5d桍XC+Դm-ۨG1^sr#%Vx<k5eP|ʋgjDAWu!$흋l_~ǯ/I{\XhڤV3;Su夑~E.D[ݟۣ]BRkRpKRw^̵rr,x7uB[\D{"ןZϝtxN !x'h4_|Fy{*35ahfMGx?yFƤZV' :N]頔K|_I";e`Vgғfg@yqqw}{Xt.:Ҽt:8s@(Ƈn˂Zsވ;$ Jw#;k:Nք}` q:䕯c6L|+pʑP.UUR9~,멏uKԨO!Xs[ц "cO-#c7m.i"ꐭsá3;B f\ @8>;Emy3sI폥V%J?xP A` N 'c19i;E`E,>xN/~Vƃ?pi7R+ oaQgv.S\:ktWd"XI҂ q;|GhsiQqt"ZEe>n3eB׿n:Ψz/t,hZZU(56/|sg)/?+.sz4W0u;DQr/1в@[K#edL6FZSmȾ8DkqR*>Vu+ēе \+~]K {Ǚ5i/?~ZIQ x{MZ*VFMqG3#cbOc-1RLd?4/j7RkR%bTwF:9ؽ]:L2(:J$Mc_731!r'Dd Jff;R2&VmzmC?Wk4^gxg.=t-Uwk4A9>7,I uPشt֭6QA;0gNܬz`Ў4<fmx ,k#[rA˴w`ʱ/D-Hܓz=e>NTu#\ީlȘd,IX[M&']; .|WFG'-r:|Oa+6;!o@Q>7on̋G\X+d盩ed=IJq1@ka'j@XE RBi>Gr4Y_PڪY&j:O}%X8tЈ'Z Y@wDO=V󱁞tW :6xi$c'1ŤRnk8y۞j D|/_}t]ü@ 7عmtr3_[1UW/;Ada\gm-&H*FwzSOFٜϬ1z5_QW0&䝟 $: Onú3q 2k#p|!%FRND[^@&(z@vI[hchca"32=nt"vsDoMNfWDHE6ݢٿF47^"KnGZ BND[^6%EQ݃98Bֆ;Ds;kȸggo;v_GHކբiqs\~(.=ܙ uk |˱Gi;lmm8ΤMEB"k!6眑qI9) N7Rkt_ys]b1&uQR"&ؽHcu.Ň=I-hk-'Nggwյ5<t,T!Ww( Yj!#^'b"m7BH.<ɵ~I,WmwݼteͯںHy1ʇt+'8,e 4nS'PBҨ7PRԍaNjF;Dq[22Z򎃟tPFr"o\yW1&O-#调2)3n!jmQ]y ct)`nyXZB }( D;Rv5edkR8R,t}aucH)XQ^a?"hޤ|GGf0 3^n{m+vٝ1\bh8В錌 ()bkq>X B K:YcP# \{4YScNێ W~'zլ% Ht Riڑ`lgdL>xx!녰DL [7^})x?~8Ac]<ˉϷ/"|Om=_jq;#c:P]6noc,)BPۼT>Q F2 o~™QiP./2.]3=!20RXw{ա%->JwS)v$>5+m;+`Jqix BhLs-0{1AP6 jB&UhB`ܨŒJLs;#c$缫p$C!ƁF((⳿ǵWT$hU{ NnWپM<ߋ[\ʢNS*nb\E;v$k8ا'I0sRo:oOÞ1iA9Nw|iyj?/3K~3r#aWs$ {itdO;Kޞb=m b_~'6A')M$XAAD/5zFƤ lsaw{" _$l9?=!l"YS[e71C~8Ņ 6 J)a)":hIzA AqhiRKF}J@(v+F]"D\+b1?=EI\r}O|i9V *U HǣS["Q_\dOJ6}{( 9DP…>c l-7-aG'8L1)\#ŀhoS`P! Է`FG:afl74#ơd2[Zdԇ~%1ŅaLBT}VG}Jŀ0I2zA'b)߉fdLZBc{,D7^= Zxvs_\}KDA $%`w}i\er̝Vp`g0m\4́?7k?aD#0Ĺi߉fdL".{36Qnlq5Qn}M+/է>On(qK`{ 2н\H$2b\b?LRmGJڑN mvls1k8="cuxlDĵ.=' iU ְ W(-cLjD^hԠfiqc>`,VƲ|2NxyqރxkY.yhkG"1=pC:p#+yax^.Ky ͜"09HLNH)t?$.GWs)!7j8t)ԯ͸{Õ1D&ĉA,H{zzJd!}*Gh(azߌ1{+ģЙr_FGAr>r8甬E2=c{Q\繚 B1+Ph[]،#%77x$B>+Rv>3щWlm~$XH#dHw\EN=^z-2B NX+Pn(hSB1HbuHkv.BxAz&@B%f> 77(r(ԍҝ0 o;vBBXfW*0}NT,rD$9&6ֆPG&6Xvmj%eMgqT *"mdPʥ}/WmV P)6̝) $-C'r91C7>~{Zm\AQWJ6m-*f `hcqdlG3t6g% O) Cqf?_치ce>#8h{u{k,յyO;+/!KvnI?k-5jctُ;Mخ 8HLR|'b+W!R8jnkԂVuw=,$5'gK+s$6()QR"bLm Zfs>X^hcaD"dLd\Hة7׾Ь"®I/өy!(/?F~ B834Q6gyi77F#P"\kvB%Xd[f9V.5AQR %y9=&zqRĕ(|cP^(hW?Ź%:th^f74Na)w~+&@{J7-"vX{PRpS !\sK*p`^[}?.(X\GXkDzLcTqVخyTo^C'?{@&zàY v.Q[y NS\z:<0ab u~BX]vF՗#>Z| Dv۪BwZ ԆpRWz3eZDqx;\X;TgZrV#b#YXk{6ZEv.֛_+bO"FGIq>2qtgV5縒rU\6Ls;X*Yx4sg-JJ:Z#85[f&wXw;28Z.-lI-FIE g6K'ߋNҩP[{En8F]D[1;;1tlkm43RRM&)$`j9@HGsfsG6wGAd,p\p힝i NH+"}'X+p{#em#9ɤ勇BSFx>B7ƥgY?-J'9'0&ĘiĞAyt`/:sg?N~!LFHu`Unh!29;pW 6mm)t1 W]IXڐxcK8X 9fsƎ&5׿!%T,|)͟ZqKLDPAs<fr(uEI5+f`OܡUI!tj)N&qKBxY=qC=A?M-|{GSKJDeDbz|pȡ3cwA*NW dCh'lmR[B)ᗖ׼0T"VZƒ; K&pfl.pK;}lEFg2AR:Ga,EC|'0&" o1ڦvP>˘tT\8ۓp,] Ih[HPACt TQ7ĭ46^t ڈlN0l]qC;Ԃ8\N̒B%"mikJ#h5>m RZsdTw[ 9QHzqܗWs{#J ``}[dRMZ[F/AHVƒ~)J4@C$peN'x*3~2FM9K=cu+x*tޏJhjuZQ? HD=3_BЪտmV^ aJC[ tv.S_{ H0y3㼗}ֲ݆Ў4t/\8JqmAiZwd߈^^LZ.lUYmPxDW%*pTo*u\{kXqOQ9t?AW߫(SN}5!J)1&1IYTxЮR.񼃣&=ڰ^o; #vρj:l6;E=8lPoazr?aaTܫ()ɹ9Vk4G-n5̝x7& /&UNn⃱h]AƒppRSO pF}Vv)OpTFmJ$^f]ȑm,k& G2&)# H#:$&%BTzg,% :CSz!!P5Lr?s|VNm.Bv@]h6kJ8 }9kl:nk籛+ndHjHu=+{ye:oNBiCq8V.l$t5\'~Gyy~q 0&`5P<&|/.$K{k=0:BBc(K|Ww{Zq+T"2"[!Di !$? S\L!dUoTxZk1߭(b@PRlVoeۣBpҿF+䬈sһ!rFa=|aS׿h.#l Wm1cU\%%<V?Ij=T{,@k/ѩx'ϟ% [,L豣H):b)!ml8`gC.DWA[#\!_ml& L2.fg)-e;愇Xk]ۗaYr3'&q0QqqZxq8epGI6ht2հr?{y~ {z:IH9-f~?w:\,`^e_].|9pB0A*;4ngN●zkf* 1Yz>N5bfZK5N@'mD&F`RÖr-qŶ#9u&:u $#ކlGwgTg;* !"n~qO|,QhhC;c:TW-*GމWZ& dsoAG950 {6d c-Wv:nʪeGGM ^9]q| 6T@Rb."lS%kp;NJH+y/_cqX;86ؤz7#ѧimY|H[bߑD$[ģa#hIa6&|B-uˏs}\*kmKہ5hcIzsoc#}XhF GW\JS@*#QigEHh^%jmI?C"7_m mA9F-傏*~92f)J3Vs\4-O# ,Asut#nFzEgҡ8?:C>LEZK2Ó_ > onU ɪG!AE'o2_8alQ :Q-*c.59Oq-4C=om, X.'fJ<0˻,ck,Wx +qČd`g5[t8g+=Ry6?{镒ek2Mhj)Dώm ) 4晅zHU?ס$R^նqaC3,|El^!.`T%%BSes<qD\ r˧ vJAGk!F#9\$.Ms5\{K_| !YDuڻWCej{Tha:T?T5]\ֺ;,D4f݋0#?f-Dc:oK2W" `hV&ϑ-9V);q95kHBhDqފTw[$種gE*KGY8. ??"n wXBgOA\{Ta6yF}6g&F'fݭ̌b- VK.ʇE.Xwb1T9-HlOb'Ж6t⍜6rf$L @&6()J[cuTw;* nFW lł!K4sGwj!*D{ p T+gA7q{LRRs]Iev z)|lIt=+q%o_gkaN_,A -80Ni܅Iz$*r^ܦ1ߢ0(]F{>w:2~T$88 4X8~qg? ! KvyLcX0:1{T]7#ӧNnV]$;-Vju<$#%4Xii,-,}9NoR5:YD%$6n˲irn>GfXL nqi&113džӦD829KpOCh_[v/a,uY8^>_~|tA V;VRJ$ueL-,ϜmAa6SAÛo^ "NCxlZajM,pR]RXW.2aZI4Cur[DZC0 > %zRwEWwvBL#$dGU)ϟNt5CI+uzX(*B;c* ˗#Agvj"V "MDVd,O(_Kff.h}yh 6cqoc/FrFX1,\1]fQdR+ 9W(B%`(B!7f$vYO8-`9T̓wI759~ S=fqӴНՕ NLԩ H{f͝3ԍ < Zy5fhU;Lq5G yp'HzsN?xRњ+aL l5׎zM/>MuAsxg&zv(.>W\Dlv>xm wJ;fQӪ&wx{鯾I^Yʞr)b kϣm 7jxk:R8.j2j DX9?? vVT~WUlדtAyL/.╏!<`kL|[AR<11+*+FWq~s8R2CiOvHxJRsynd BĭU9GqTUiuN:-V^:cuål/Ѯ^z{7NToO4LFpV䉱 bfiG\6s7b1m ENKlN T#itt,qk,qr.Q ģ%W/|ݍ ?IN(h1>trD-7G (yʫ`qKX_Iر hnKjV~M$}Bi/svLsIr/L}sccp`ijgGKzD A3=J99;H'FGC u+R{0fx;LthZ8B "PC|`X"Ϯm,P)r1OXgh )݉ IW G#ֹQo&չ*1FNKh>/G^/+q{#<_cC- u?D  b|>d0xK/|ÇBve>Ǚ~0k-'81\{1t9<ÑRٜG |cq!`vV9j`FF!Zkrr1(*^W"r!By*R:C̥ke+ߧzy3߃S 4L|KܸrjsWuZQ+e}@[m%2& 3;}84C]VA aRJQ*Q"PT9#7F{)$R*#_> <@MHBg:˨\ҡGcA&P2&ʃ޻j5f+Ugt0Dh-@9GrjR1;CqN6/oDs0ZIv2nH󎢘8-R*zOMsy|yw^dqC^S/02VxФJ@[,rQLl\_3VIMj$\7hn^/x\9CZw'7l7^)"f!s?]ϗ$Ϭ 'gJ,sfOqziJ%v9;4jh)J#ЦqY8^>}Q][Up# ñ}0zC6Ԃv񜬘bZ7qp)ϩ2y'6X;P~@ĭhH IDAT_HZAFÛ[X!U, iE'^>3oob,ˮ3o};ĔsfeV%+k8(Q#Brvv~2l~ nHmÀ-wEjHJTU,r"3c~{#*qV1nukKmξ \?@:B8)e%zw#ݡ}UZ_BgÙ#Re k_y<%M֘h|)za(x" f6%?ZΙeLIkW Niu+Yԛa.fK9e)IRㄭa0ϫziώ×n\R)Z& RaMJsli,]o#V@8>^[ůg0!IWJ b'NkHA8\pSjKǗ9 +Ք}͖io!FQ)2xJzK3zIv! ծ:#"OtE,{KVٺ.:87:cX{ d}zwΆ,~`ZZdbϪ]녍|?ΟRlIIXDt_灢Í"tJS-Wn~*Rڻ>2u]izcϐ]fT7mνk#TiA%dIs.yt@9Z|φAF?$kW5l'gYuZ78A[͂pq՜ⱽ&M /0ge bU) 0YQG,Packp kvOKk/5OE[ն7+'A !Y,MM3`i=O!qcO4<#62B5N+r2׏׏ȌqZ.-N?@7j7QN9Oo ^;. 6,3c|B:UI! qﳱA0ŋ^#7zNdzr3Ǹcps z }ԆXra0 7:]\;;OrrąĻ|G]YވYAc-J)$3w۵цöJIIn-DqUHkeٌe{1kpEs$oar7YS(R"Guh^c汋aPk#` ^quV;V֓kW/#ॗ^ A)Xknx4$0Fsya#Ol[}HsY1CC7l~p ,~c܏G$36w؎Rrc|ll镂Tolpu:.RFV (A 1SyŘp'⓴XR;qjoYc66X3_f-:?#kߤ|ۜIMJ+2~c͏ ϳx `Q^!m R()[l Bc|j#E{WFΝ!n]F*,0[51cEI>3/o1|t3{ b c!lݢLf}W[8vM(\b"A˨SZCֿOһ33$QXNtZ1d6'$W)Iat$ v KK1:->3\k0nv\ݏdK:+C*,0VcHRi!-qTwn:/h=G^v~J6%`c~ <ᓾsAW=nܸOBgܰ\ǣgk-I3Hst:x>ֵx)1Mee?m-! a }O,"/hH4NX8 c&0ܺB:v$QY51W^Lc׏x30Yr\pܗepuGn-jk1uJ/ԧ,ѻ7N:H"PVH7{)AH,b";Wx^<һctpMų'EdƠepaM@ Qىi6OI<)9J+6ig7# l\k6nʹWyo95 m*d gޤt<V5Wm{e))RmIRB<=K]5籲Q4Dk1j',nX=:z>:iD4| |QR'r$gĸ}͐f!/YVK2fo0Wa@P~f66SHν3&U)lN*NHu\ ɇH;n68a}s_ s?s+}b#s._±c˄A;a%q$)y[h ;Hrc1Hc-R#~HR[ {"GcEVp=}D0C(t!QLi~"أ0Z֚f6{ ;;;ͱ>٭OIև1w{C<)v@9b}Js[x;-f"Z!bq ՆLkeԏ%ɵ[S#ұe i) r|*R+/ܿq K#S7X(Au1K|Σx1~K; nv4v\pd?0<>k8y$lĤaͬ1XdG+ϭ,rkKTɥn.(iQmJR*ԩIǛay@JU Xc0S72_!羈 yA#yi v37؎?w>Ml1Z-_߼c~dyi8IfRr0d;N5(FQ*$ q;VL<|C$:9d! pٳ1Rg1vշG{nd j!CN $,1|>R ֮%&O"oGiϊ1~@:p#4.7#:OGWq DE)h\?~ޓsU9luq&saֳkwvmnaL?<G#%!N89xzZ{^8'1Hgv=BӧMδdE=QjF7.Azhw)x+FL fSzWɷ7CK9 Ua<#5k:$َJ:cR<Yƕvzl 1xrԡb̝.#,1ư1 i ^ e+dd5v٣K!%InyfZG/*EM5}/7˟Jqd1 L{#~tޏQ<#%Ǜ TIҳ^S. ZhNjl?A[3T3_c=m{ۏ[Q2W{ce*ûΝW lElnuDY^knר#$$H΃0$\\YRTԛ6-ovLk\XZ`!IsO՗_ZzE\d UJ_@QbMtr_| gqc)@=Mh uhb&bR1";*Xxm%)m~j,a#z}~"=6FQ>WyTBpSWN`xZFzbm,}|UYڴ%I8Фx$UG~{4;=4Nkә[&&Oغ_EZ+ϑ%q~z[Do]#XȳKm2c%4[t bdVFdG)_|d3 E@S/?+Ak:hk-^1Epyv0BTH|<>zonk{보f`~S$.A#@m ;qc 00HB%hcZFbeXcǿ;BI4= x69ѿTjnJحV8<AX!}4#`S s M=McY`4 )ǃ>S"3m0پU{s?,-.C}֮:ox4e~5JgKI57;}ȴ}0$I&ՆD;̘`qkrs)NLsu0aE> 6 2?g=w{<)B(zh|KYҦSvo+F5cz]' Iݸ&S%1\n F70vr}5*`l #tQ$}{? PS|}]'%1\qӧy ZFNJã\kP* vɷlĦОc' %ޡyZ'_1BRAkzMFs}ǭNUy63wTE ל?w7_4v5O|XF vkxʍXˇNW"ņOQHw{Z>@R-cTEFVؼ67~ıs#mBιҭ1dq&&-ݮgK{Μ7^g0zY@,wg.8%*>O(BJnuY .}ZTpֲ4} FwBuXm\=jS$0nKf(1N%% O]ZdŠjdڠ 20HrM˓M[k&ǚNRL30(2b_Az!g^ /7j2[ f#2։X<:cRx֢;WnE1wcFtj5Vwnݾïگ"=*inҌNb9U%ܿJ?,:Iv\%hyJJ,'3kE.әX}t3qWLO߱B81&)Px3b嘅\k"nuouBp" 7|eqխk,6Ơ;lom/L5r?#Gy31WYmf4Af,i mY\;5=[(D:tu~kK5_|N= YBi}(fٌ.ٌjǣn6G=]Y ;TJrf'rHY E۷;1`!Ŀ <2֢x&``,͓`=xFe Nȭn!u2q//k4t\n;Nn3cQăߑfʍ\[hj8˴S6;~OwH> &fZ m}LҿO:Ic9j"|a,*;P[>qک֠wɲ hh@vø~ QܮQ㰡$))iy6f9Zk'O͛x7N""&^1H!ݣ}5Z_ UyUtwzCnt(ti͓"Y,zpo-Vۇרq!EK8UޚN X gw6:K&.iehg.d Ø6:h8gRJ~es}0vӺzM2"5j8<B!TܘsB`&[q^}91&h{ kr*I h\$X8 E[8rC@)!mp a$2gܾJlͰ/PRm]jn^Q?ǟUųYߑ[eu#INH M˖A0 x>υ Ihzin+I/͸{`ըQCXKn KaF"&ԏ'),cyR% xut<~ iAJo.v*!1jVQFXy yysDQ\?Y !9khqF!d!w9iu3ŵW|eؽKOHY>哧=[1yLp}f,w{+4M2߼`jt)Y)NfA ?L^~~w5 [`u1Yo+s_.TJ^O` /w鮾?.aRO]Rұ׆bq~EtNZ#g^Hmӿ3_D5ɳ۵'AM3>y LG_Zy}$77YZZ"Ix$͍+5jr '[ zO*uN0އ)'.|} k/%:wowPAƱڧi{ȍqj^،> eE)E%a/LkGpSI1#JBQ0|ՄӎlAJ@xyN>5,Bɬs]e^ئ}uܐYGschQOםs.5!?Kxs/} d"shnn`'N3MW,YFI||_tSMXDBJPRh.ckq)')[%ݹE; <5 7N 3Bϣ'\KsB0hS= @)R'A=Θ}{ϜCݺ~3s?߼Js< !P^AKϰpuì{i7Afl?R ހa4b4t޶F#Z~׾Aǻ>Ookkf8XvZxRpv_'djT.j%}~ a$BzX3tx {w1YD>Gc=))ňm 8|!uCHO qN釧:Vk7nGk]}f0kDAsC ԨQct`% \64j{u秜[ ':9T 7? X>OE=q_)Y; R9J,%6'z66ZC9|utA1inPDYVRPpT= oikh؏BwHhzɗYb'v*KWҌ:lc%grh8HxBЉSH#q}W>|)&/"?Cǻ PƯ+N9dR5jԘ_=COqpLnFi}FH8yμ ŀIE ' 7.F[4W.\yVS}LluۋX ]۴sP ؊$sqeRaēs%]8f8Ø{!injBاDAۂnl ciV%<2j`loޮ_k I6u[UGBRcXi]h[[L^ rXKXb??q5AFy)bMNm#y~v,v*8N$wkC(2M펢eU[S?яZ&Z멵UI!΀8۪ׄj83Y| ft:2Rܿg_-0]Z.RihcՄKNșvJ\yA2ruS7=LNtXkT܄Dž, Biy$KK4]ƺ_;a;èOm5jZ{'ѣYӖ,v,zg^&Y2I\k~[,~1+//K|)f97;}6_:ABOq7dQa2!k|him$97A']65/_fuL!8:R)z1:sodbj_ ɓx5`aڶv|]\q;QLgC2Kl fwxw׿"iNj> 3.զfoרq|K/xi]$FUix,bMδNFmnw8+^|bJ)GI0{<"(4MfiqY"}B䆝8%7ei/j5N1 Cܸ6'Uop_ZC G 8RSph i{q4v߂k }FW]GOZO\1IJs[kQJvzJ{7Acv͝>I 5jIo4ϟ]bo Z(/DhaWk^wh ^LīX0&۷x vGUvOOD%J#`fyE I3piT|Xe~M25jr{Od)=4S0  dQ{%97i,?C Kげ$?o}51:۩,lE 7vUϨ`<҂T$5=Ljb ѱΟ?ϙ3'ߘ`Ci-lG 냈5jBr&-/+YHN/do?o+`  1}Ix"RaHrxU Ht! ]:O tХNǮtI{YE1~<S{p+JXUXm$5j^Xk].N5p1 Pb0Z'm]t܋ߠ|, o)RvoEsxg`su 8Hhrxl <PǍիW< ۜBb$U:o.E |{b^:},*Y՘<頭Թn \[ٟ}3gNϿIIjw 0O,IZFiy%hw?3~V dA]4R(XHcshN<6ƒjZ+jxl[ A5~jFNZPH()𤚖k;݁;ՆRƑgۜh5ȭiB 6pw9/.5;M.i&ںB6ܠcϑ'C& @ s B'^r.%6Bpqyg[4|9fpN9G#Ǐ-1Pjr;0Ĺ,s/,4wkԨ1}ykھGX}(= }[l!D>gD9iZre>:%"O:xsHԢBp|i-2u_cPӜ\KaP*4M^~vWMf\/ 56rxRsD)u ݍ[yh-T&&g:h{} 3`a.w},DGis1,>g .,.ɭ!5RP{dggϓxPهD ӆnyAרqQskBR}@pdYSξu.wIn9j ـI @>΢ߋ?'TM?#o IENDB`
Warning: fopen(http://spatialanalysis.co.uk/wp-content/uploads/2012/08/osm_question-488x210.png): failed to open stream: HTTP wrapper does not support writeable connections in /var/sites/s/spatial.ly/public_html/wp-includes/class-wp-image-editor.php on line 430
In Maps We Trust

In Maps We Trust

Of all the different types of data visualisation, maps* seem to have the best reputation. I think people are much less likely to trust a pie chart, for example, than a map. In a sense, this is amazing given that all maps are abstractions from reality.  They can never tell the whole truth and are nearly all based on data with some degree of uncertainty that will vary over large geographic areas. An extreme interpretation of this view is that all maps are wrong- in which case we shouldn’t bother making them. A more moderate view (and the one I take) is that maps are never perfect so we need to create and use them responsibly – not making them at all would make us worse off. This responsibility criterion is incredibly important because of the high levels of belief people have in maps. You have to ask: What are the consequences of the map you have made? Now that maps are easier than ever to produce, they risk...

Read More

Posted by on Jul 19, 2012 in Featured Maps, London, Slideshow, Spatial Analysis, Visualisation | 27 comments

Lives on the Line: Life Expectancy and Child Poverty as a Tube Map

Lives on the Line: Life Expectancy and Child Poverty as a Tube Map

Maps have always been a powerful way of  highlighting London’s social inequalities (Charles Booth‘s and John Snow‘s are the most iconic examples of this) and they continue to show how the richest and poorest Londoners often live side by side.  As the BBC’s “The Secret History of Our Streets” has demonstrated, stark inequalities in the wealth and health of Londoners have existed for centuries and, sadly, persist to the present day. A popular way of describing some of the inequalities is to use the analogy that a year in life expectancy is lost for every station eastbound on the Jubilee Line between Westminster and Canning Town. Since first hearing this a few years ago I have wanted to make a map for the rest of the Transport for London network. I have finally done this and you can view the interactive version here and read a more in depth article in the journal Environment and Planning A. The map shows two key statistics: 1) the life expectancy at birth of...

Read More

Posted by on Feb 16, 2011 in Featured Maps, London, R Spatial, Visualisation | 6 comments

Mapping London’s Population Change 1801-2030

Mapping London’s Population Change 1801-2030

Buried in the London Datastore are the population estimates for each of the London Boroughs between 2001 – 2030. They predict a declining population for most boroughs with the exception of a few to the east. I was surprised by this general decline and also the numbers involved- I expected larger changes from one year to the next. I think this is because my perception of migration is of the volume of people moving rather than the net effects on the baseline population of these movements. I don’t envy the GLA for making predictions so far into the future, but can understand why they have to do it (think how long it took initiate Crossrail!). Last year I produced a simple animation showing past changes in London’s population density (data) and it provides a nice comparison to the above. In total I have squeezed 40 maps on this page! Technical Stuff These maps were all produced to demonstrate the mapping capabilities of R. The first uses ggplot2 (plus classInt + RColorBrewer) and is based on some code...

Read More